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ABSTRACT
. Tt is report describes a method for using three-dimensional

infinite el:ments to compute acoustic fields in the infinite region
containin. water that surrounds a submerged structure. In this
method. finite elements are used to represent a bounded region that
contains the structure and in some cases contains part of the
surrounc'ing water. The unbounded region that surrounds the
bounded region represented by finite elements and that contains the
remaindey of the water is represented with infinite elements. The
infinite elements implement the added mass approximation to the
Helmholtz e.uation.

Several other methods are available for modeling the the effects
of the surrounding water. For the added mass approximation, an
alternative to using infinite elements is to model part of the
surrounding water with several layers of finite elements. To
determine whether the method using infinite elements gives an
advantage, thz efficiency of that method is compared with the
efficiency of the alternative method. The relative efficiencies are
determined by comparing, for each method, the effort to construct the
model and the accuracy of the solutions obtained. Evaluation of the
infinite elements shows that they produce accurate results especially if
they are used over a layer of finite fluid elements. However, when
solutions obtained using infinite elements are compared with solutions
obtained using only finite elements, it is seen that, for added mass
problems, infinite elements do not offer a significant advantage over
finite elements. Infinite elements are expected to provide a greater
advantage when used to solve the Helmholtz equation.

ADMINISTRATIVE INFORMATION
This progect was juintly supporied by the D TNSRD C Independent Rescarch Program, spensored by the
Space and Naval Warfare Systems Command, Director of Navy Laboratories, SPAWARS 005, and
administered by the Director of Research, DTNSRD C 012.3 under The Office of Chief of Naval Research

Program Element 61153N (Task Area R000-01-01 under DTNSRDC Work Unit 1844-125.) and by the Office

of Naval Rescarch Mathematical Sciences program, Numerical Methods fur Naval Vehicles Program, Program

Element 61153N, Task Area BR-014-03-51, Work Unit 1840-040.
INTRODUCTION

To compute magnetic or acoustic fields about submerged marine structures, the structure, the

surrounding water, and interactions between them must be modeled. The field and the stiucture can cach be
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represented by finite elements and the representations can be coupled using a method developed by
Zienkiewicz and Newton.! If the structure is submerged in the sea, the extent of the water surrounding it is
50 great that the region containing the water is best represented as having infinite extent. If finite elements
are used w solve such a problem, one can model the structure and a finite part of the infinite region
surrounding the structure. This leaves the problem of accounting for the remainder of the surrounding
infinite region.

One method of accounting for the infinite region of water surrounding a submerged structure is to
represent the region with infinite elements. To solve problems involving sound radiated or scattered by a
submerged structure, the water is treated as an acoustic fluid, that is, a fluid having an acoustic pressure field
described by the wave equation. For low frequencies, an approximation called the added mass approximation
(described later in this report) simplifies the solution of the acoustic problems. This report documents the
development of infinite elements and the evaluation of these elements for fluid-structure interaction probler.
involving the vibrations of submerged structures in which the added mass approximation is made.

To be useful, an infinite element must not only be able to produce solutions with good accuracy but

must achieve this accuracy while requiring less effort for modeling and computation than competing methods.

Several competing methods of accounting for the surrounding infinite region are as follows:

+ The surrounding region is truncated by modeling a large part of it with finite elements and
applying boundary conditions that approximate the effects of the remainder of the infinite

region.

« The solution is expanded as a series of analytic functions in the surrounding region with the

coeflicients of the series terms introduced as unknowns.
+ The effects of the surrounding region are represented by an integral equation on the boundary

of the region surrounding the finite elements.

0
Zienkiewicz et al.” compare modeling with these methods and with infinite elements and find that each has

certain advantages and disadvantages.
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st The advantages of using infinite elements are that they maintain symmetry and reasonable bandwidths
i" in the matrices produced, and the method is casy o implement using available finite element programs. On
the other hand, sume formulations of infinite elements introduce more degrees of freedom than do competing

. methods, and in some cases an exatra effort must be made to ensure that element shapes and modeling
2 configurations provide unique mappings. See Bettess and Bet,t,ess3 for a discussion on avoiding nonunique
ReRy mappings. [or some problems, these characteristics may require additional effort in producing the numerical
i model.

In this report the surrounding infinite medium is assumed to be an acoustic fluid and infinite elemernts
:0?:; are used to represent thas fluid. An infinite element represents a sector of the infinite region extending from

the boundary of e finite region. In both finite and infinite elements the unknown function is approximated

‘; Ly shape functivns and a functivnal involving the shape functions is integrated over the arca or volume of the
: clement. To obtain convergent integrals for infinite elements, one of two schemes is used.3 The first

’5.‘:: incorporates decay factors in the shape functions that vary in the direction that extends to infinity, the second
gheit

P scheme maps the infinite ¢lement into a standard square or cube. In the second scheme, the decay factors

by
»

appear an the mappings that compress the infinite element into a finite region. In either case, the decay
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factors may ke vine of several forms, they may decrease exponentially with the distance r from a fixed point,
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or decrease as a power of 1. Many earlier developments of infinite elements used exponential decay l'actors,4
but thes - require the choice of a sumewhat arbitrary parameter called the decay length, and at moderate radii
thie shape functions do not approximate the behavior of solutions as well as the reciprocal of a power of the
radius. Later work in infinite clcmcntbs has emphasized decay factors that decrease as 1,717, and these factors
are used in this work,

Several beginnings of applications of infinite elements to vibiations of submerged structures have been
made 1 which promising results have buen l'cpurtc«l.ﬁ"i The iufinite elements used in these papers contained
exponential decay factors, and the papets do not report useful comparisons witli alt rnative methods of

computation.
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4 In problems with steady state solutions for the acoustic response of submerged structures, the behavior
o\
N

of the surrounding acoustic fluid is described by the Helmholiz equation. For low frequencies, an

approximation can be made in which the effect of the surrounding fluid becomes that of incr2asing the mass

s

P Y,
E%. B

22

of the structure. Thus approximation is called the added mass approximaticn. The results given in this report

show that, for fluid-st.ucture interaction problems using the added mass approximation, infinite elem« 1ts give

el .
s good results and sn fact are competitive with an alternative method. Howeve .n the case of the added mass
18 4
':, '; approximation the nfinite elements do not offer a clear advantage over t' « alternative. This conclusion does
e
iy N . . -
( not apply to the application of infinite elements to Helmholtz equation problems in which infin, + elements are
i : : ,
: expected to offer advantages over their competitors, since for these problems the . ov iir wave characteristics
4l

of the sound field are important and the infinite elements will reflect these chararteristics.

FINITE AND INFINITE ELEMENT MODEL OF A FLUID-STRUCTURE SYS1&EM

A finite element model is used w compute the natural frequencie. ~f a structve sabmerged in an
acoustic fluxd or the structure’s response o harmonic excitation over arange of frequencies The finite
element model of the acoustic fluid in which a structure is submerged mzy ~ontain Loth finite and infinite
fluid elements. Both fimite and infinite fluid elements mav be of various orders with various numbers of
nodes. The infinite and finite fluid elements used in this report are brick-type three-dimensional elements
with eight nodes.

Paradoxically, an infinite element is a type of finite element. (The adjective “‘finite’” indicates that a
finite element has at leest finite dimensions, that it is not an infinitesimal element as used in the derivation of
equations of physics.) Thus infinite elements inherit many of the desirable features of finite elements The
configuration of the model in terms of nodes and connections and the form of the resulting matiices do not
change when infinite elements are included. Computing the matrix entries contributed by infinite elements
follows the same steps as computing matrix entries for finite clements, although some special considerations
are needed to ensure that integrals over infinite regions converge. The contribution of an infinitt element is
included n a finite element matrix in the .ame manner as the contribution of a finite element The finite

element matrices remamn symmetric and banded if infinite elements are included. These properties riake it

J
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casy to inclu e 1.finite elements in existing finite element codes, and in the following discussions we will use
exprossivite sach «s finite element method, finite element model, or finite element matrix, even though
inﬁn‘te elemenis may be included.

To u.¢ infinite elements to model a structure submerged in an unvounded acoustic fluid such as the
z24, otie moded: s finite 1egion conwining the structure and optionally part of the fluid close to the structure
with finite ements and the remaiader with infinite elements. A model of the surronnding fluid that contains
only fiuit. fluid eJements cousists of one or more layers of finite elements covening the surface formed by the
interface b oiween the structure and the fluid. If infinite fluid elements are used, one or more outer layers of
finire cJomcuw are replaced Ly alayer of infinite elements. Each infinite element represents a sector of the
idinite regwon radiating outward from the boundary of the region modeled with finite elements. Figure 1
shuwa the three vonfigui stivns of finite and infinite eleraents modeling the sarrounding fluid. The most
advantageous artangement in terms of reducing modeling and computation cosis is that all the finite fluid
slements are replaced so that only infinite elements remain to model the acoustic fluid.

The finite element & ¢thod prod ices one matrix equation for the displacements in the structure and
auother matrix cquation for the acoustiv pressure field in the surrounding fluid. These matrix equations are
«cupled by terms arising from interactions between the fluid and the structure. To compute natural
freyuen s of the fluid-structure system, one assumes a time harmonic solution, and the matrix equation
besmics the » quation for an eigenvalue problem that deterr ines the frequencies. To compute the response
.» o harmouic uaditing 1orce, one solves a systein of equations with complex coeflicients and a sinusotidal
forcing term for the nodal displacements.

Swandard finite element modeling procedures produce the matrix ¢quation for the vector of nodal

displacements u in the struct,urc8
Mu + Bu + Ku = f

. i which M, B, and K are the structural mass, damping, and stiffness matricies and f is the vector of forces

acting on the nodes of the structure.
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(a)

(c)

Fig. 1. Infinite elements and finite elements modeling the surrounding fluid:
(a) Fluid modeled with three layers of finite elements, (b) Fluid modeled
with infinite elements over two layers of finite elements, and (¢) Fluid
modeled with only infinite elements.

The differential equation for the acoustic pressure P in the fluid is the wave equation

1 8%P 2p

—_— - == ()

c® o
where ¢ is the speed of sound in the fluid. A method of analogies that uses solid three-dimensional structural

elements produces a matrix equation for the pressure field in the acoustic fluid. The method of mmlogio::9 is

[ - -
apphied by giving Young’s modulus ¥ == 1.0 and the shear modulus G = 10” and produces a matrix equation
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for the pressure field in the acoustic fluid
Qp +Hp=0

where p is a vector of pressures at the nodes of the fluid finite ¢lements.
If the acoustic pressure is harmonic in time with frequency w, that is, P(x,t) = p(x)e* where x is a

point in space and k = w/c, the wave equation becomes the Helmholtz equation

kp-i—Vp 0. (1)

Interactions at the fluid-structure interface couple the structure and fluid matrix equations See
Schroeder and Marcus!® and Ev erstine et al.!! for details of the analysis of the fluid-structure coupling The
acoustic pressure acting on the interface produces a force vector (with the convention that forces acting

outward from the surface are positive), so the matrix equation for the structure bec »mes
Mu +Bu+Ku=-Ap+T

where the matrices M, B, and K are defined previously, A is a matrix whose entries reflect the areas of
elements on the interface, and F is the vector of forces other than the acoustic forces on the nodes of the
structure. The mo. 'n of the structure also affects the acoustic pressure field in the fluid. The normal
component u, of the avc=leration of the interface between the structure and fluid is related to the gradient of

the acoustic pressure field by the equation

Q)!Q.)
ko]
I

=

"pﬁﬁ

where p 15 the density of the fluid and J,0¢ is the derivative in the direction fi normal to the interface  This
relation 15 added as a boundary condition and produces a force-type term in the equation for the acoustic

pressure field. In the fluid finite element matrix equation, this term is an area matrix term

Qp + Hp == - pAT.
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\ For the time harmonic case this equation becomes
o -
, k* Qo + Hp = - pAT. (2)
n."'o%i:
3
; {.4’}5 The matrix A 1s the same area matrix that appears in the matrix equation for the structure. Either a
By
heh consistent or a lumped formulation may be chosen to compute the matrix A. For problems using the added
?‘t ISI
,%' ’g mass approximation, the lumped formulation has worked well10:11 and was used in this work.
4o
%? l Combining the matrix equations for the structure and the acoustic ficld produces a system of equations
§
el
e{él"} for the coupled fluid-structure problem
A% 4%

Mu+Bu+Ku+Ap=F

0

e . g
: ~pA'u + Qp + Hp = 0.

(0
o
L3

These equations are written in the form of a matrix equation

B [ [ R e [ B

P
This equation can be made symmetric by defining a new variable, essentially a velocity pot,ential12

and integrating the second row to obtain the matrix equation in *he form

L0 lo-0

If the equation 1s harmonic in time (this is the situation to which the Helmholtz equation applies), then the

_ coupled matrix equation becomes

o R I B A T !
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The response to a harmonic excitation of frequency w is computed by solving the preceding equation for
. displacements at selected grid points resulting from an applied harmonic load F(t) = ¢'“* applied at a load

point. For natural frequencies, the eigenvalue equation

M 0 B Al [K o
“lo @l T¥lAap 0| tlou|[=0

a

is solved for the complex frequencies w.
In this report the added mass approximation, valid for low frequencies, is used. For small w the
Helmholtz equation (Eq. 1) is approximated by 7%p = 0, the fluid matrix equation (Eq. 2) becomes

Hp = - pAT; and the coupled fluid-structure system of equations (Eq. 3) is

Mu +Bu + Ku+Ap=0

- pATY + Hp = 0.

If the secund equation is solved for p and this expression for p is substituted into the first equation, the first
equativn will include the term pAH 'AT i, which has the form of a mass term and is called the added mass.
- This substitution was used to compute the natural frequencies of a submerged plate. For computational

reasouns, the substitution was not used explicitly for the frequency response of a submerged cylinder.

INFINITE ELEMENT FORMULATION
The infinite elemeuts used in this study are of the mapped reciprocal decay t.ype.5 They are three-
dimensional brick-type elements with eight nodes. The formulation of these elements is similar to that of an
lsopatametric finite clement in that the region represented by the element is mapped into a standard finite
cube. The mapping for an infinite element incorporates decay factors, factors that decrease to zero fast
enough t map the infinite region into a standard finite cube. The decay factors used in these eler.ents are

reciprocals of powers of the distance r from a convenient origin to the mapped point.
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;sg& 4 The mapping function is
ot
;:, n = x;Fo( ) Fa(n)Hy(¢) + xoF1(€)Fon)Hy(s)
+ x3F (E)Fy(n)H () + x,Fo )F1(n)H,(s)
*\»,
o + xsF €)Fo 1) Haf5) + %oy (€)Foln)Hos)
\
’;'?l: + x7F1(€)Fi(n)Ho() + xsFa( E)Fy(n)Hys)
%
K , and the shape functions are
A
PRAX)
r Ni(&:m.5) = Fo Fon)Go(s)
Lt .
ig N &1,5) = F(Fo()1(5)
P
Ny(€,1,5) = Fy(F (1) 1(5)
o
1 'ﬂi N4(&m,¢) = Fo E)F1(n)Gls)
,':(‘( i
o N§(€,2,5) = P E)Fo(n)Cols)
o
T Ne(€,m,6) = Fi(E)Fo(n)Gyfs)
{ Ny(€,7,6) = Fy(E)Fy(n)Gels)
7
;',i,g’é Ng(€,1,6) = Fa( )F (n)Gofs)
X ‘Ad'_'
:g?ﬁé where the functions I, G, and H are defined by
9
R Fi(r) = (1-7)/2; Fo(7) = (1+7)/2;

Gy(s) = <(¢-1)/2; Gyfs) = 1-¢%
Hy(¢) = - 2¢/(1-¢); Hy(s) = (14)/(1-¢).

In the preceding definitions, a point in space is x = xi + yj + zk, for i, j, and k unit vectors in the x-, y-, and
z-directions, and x; and N; are the locations and shape functions for the ith node in an infinite element. Using

these functions, one can compute the Jacobian of the mapping function and the gradients of the shape

functions.
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Then the integrals over an element

111
[ [ [ NiNjdxdydz = [ [ [ NiN; [J| dédndg
-1-1-1
111
[ [ ] VNN, dxdydz = [ [ [ VN,V N; [J] dédpdg
-1-1-1

are computed by numerical quadrature over the finite region of the standard cube. These values are the
contributions of the infinite elemunts to the finite element matrices. Figure 2 shows the mapping and the

standard cube.

Fig. 2. An infinite element and its parent cube.

The standard cube in the &, 5, ¢ space is defined by -1 < £,7,¢ < 1. The variable ¢ is mapped into
the ditcction going to infinity in the infinite element. The face defined by nodes 1-4 of the infinite element
lies on the outer surface of the region modeled by finite elements. This lace corresponds to the face of the
standard cube that is defined by ¢ — -1. Each of the pairs of nodes 1,5, 2,6, 3,7, and 4,8 of the infinite

clement determines one of the four rays that detarmine the 1.gion tepresented by the element. Nodes 5-8 of

11
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§§ the infinite element correspond to the four nodes in the standard cube at which ¢ = 0. Since the infinite

e

element is mapped into a finite region, a standard Gaussian quadrature is used to compute the preceding

k integrals.
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y EVALUATION OF THE INFINITE ELEMENTS

N

b L . N

; The infinite elements developed for use with the added mass approximation vere evaluated by

%‘1 performance tests in which the accuracy of solutions obtained using infinite elements was compared with the
4

‘i accuracy obtained using only finite elements. These tests of the infinite elements are intended not only to
:’;l"':\ show whether the elements produce accurate solations, but also to determine whether they offer an advantage

over other methods, that is, whether they produce as good or better accuracy with less modeling effort or less

computer ttme. Although both finite and infinite elements can be formulated with higher order mapping and

» ;7‘. D e i
Fox

)
| Pt

h

shape functions, both were chosen to have eight nodes and to have shape functions that are linear in the plane

S
1@
L

;
¥

¥
Shoch

of the fluid-structure interface. The infinite elements with eight nodes have shape functions that are quadratic

g
£

in the infinite direction. Tor fluid-structure interaction problems using the added mass approximation, it has

been shown that jood results can be obtained using only a few layers of finite elements to model the
surrounding ﬂuid.13 Therefore, for the infinite elements to be competitive with finite elements, comparable
results should be obtained using infinite elements only, or much better results should be obtained by using
infinite elements with one layer of finite elements.

The computations for carrying out the evaluadons of the infinite elements were made using the finite
element program NASTRAN. Separate programs generate the matrices for the infinite elements, and
NASTRAN reads the matrix entries during execution.

As a preliminary test to validate the formulation of the infinite elements, the elements were used to
compute the solution to a Dinchlet problem 72u = 0 outside a boundary formed by a cylindrical shell with
finite length and closed ends. The Laplace equation describes the acoustic field in the added mass
approximation. This test evaluates the performance of the infinite elements for representing the Laplace
operator while avoidhing the comphcations of the fluid-structure interaction problem  Solutions obtained using

mfinite elements were compared with solutions oltained using only finite elements. The standard for the

12
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comparisons was a solution obtained by the boundary element program BEASY. Details of the evaluation and
results of tlus test are given in Appendix A. The results of this test show that, when modeling the exterior
tegion for the three-dimensional Laplace equation, the use of infinite elements produces more accurate
. solutions than the use of finite elements.

A factor in determining the relative efficiencies of two methods is the expense of setting up and solving
a problem using each method. Since the infinite and finite elements used in this work cach contain eight
nodes, the effort needed to produce a finute element model and to perform the computations using a layer of
mfinite elements covenng the surface of the structure is approximately equal to the effort needed for one layer
of fimite elements. Thus the effort 1equired in setting up and solving a fluid model consisting of two layers of
finite flurd elements is about the same as the effort required for a model consisting of infinite fluid elements
over a layer of finite fluid elements.

Two problems were used to evaluate the performance of the infinite elements in applications to fluid-
structure interaction problems.

The first problem s to compute some lower natural frequencies of a submerged flat plate. The plate

. used 1n this test had the same dimensions and material properties as one which Marcus13 used to demonstrate

the apphcation of finite elements fur computing natural fregquencies of submerged plates. Ile showed that only
afew layers of finite flund elements are sufficient to compute accurately the natural frequencies of submerged
plates, and he obtamed guod accuracy using three layers. Therefore, for this test, a set of standard natural
frequencies was obtained using a conservative model of the surrounding {luid consisting of five layers of finite
flnd elements. The accuracy of the natural frequencies computed for the test :ases was determined by
companng those [requencies with the set of standard natural fiequencies. Three models of the surrounding
flutd were used for computing the nawral frequencies of the plate. The first model, the most desirable from
the standpoint of ease of modeling and econonty in computation, represents the sutrounding fluid with only
mfinite elements. The second model uses infimte elements to 1epresent the infinite 1egion of fluid and a layer
of fintte Hluid elements undes the nfimte clements to obtain better resvlution of the sound field in the fluid

. adjacent to the structure. To get this improved resolution, one must invest additivnal effort in preparing the
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finite element model and in computing the solution. The third model of the surrounding fluid consists of two
layers of finite fluid elements and no infinite elements. This mcdel includes the same number of elements to
be constructed and (except for some boundary constraints) the same number of degrees of freedom as the
second model. Thus the third model requires nearly the same investment in modeling efiort and
computational vxpense as the second. Appendix B gives details of the model used and techniques of the
computation.

Table 1 gives the frequencies computed in these tests.

TABLE 1. Natural frequencies of a submerged plate.

Frequencies(normalized)
Layers Infinite

of Finite | Elements Mode

Elements Used 1 2 3 4 5
5 No 1.000 1.000 1.000 1.000 1.000
0 Yes 1.044 1.024 1.033 1.016 1.020
1. Yes 1.024 1.024 1.021 1.006 1.015
2 No 1.052 1.024 1.036 1.027 1.036

In this table, the natural frequencies have been normalized by dividing the frequencics for each mode by the
standard frequency for that mode. (The unnormalized frequencies are tabulated in Appendix B) Table 1
shows that using only infinite elements to represeat the surrounding fluid produces good results and that
adding a layer of finite elements under the infinite elements produces better results. However, it also shows
that using mfinite elements does not give a significant advantage over using only finite elements, since using a
layer of finite elements and infinite elements requires approximately the same modeling and computational
effort as using two layers of finite elements. _

The second problem for evaluating the performance of the infinite elements is to compute the
frequency response of a submerged cylindrical shell. The cylindrical shell had a finite length and was
subjected to harmonic excitalion through a range of frequencics. It was driver: at one point by a sinusoidal

force of amphitude 1.0 and the response was computed at a separate transfer point. Appendix B gives details
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of this test. As in the preceding problem, the standard fur comparison is the solution obtained when the fluid

was modeled using five layers of finite fluid elements. Tigures 3 to 6 show comparisons of responses obtained

using infinite fluid clements alone or over a layer of finite fluid elements with the responses obtained using

only one or two layers of finite fluid elements. The response shown i these figures is impedance. The

impedance is given in units of lb-sec/in and equals the force applied at the drive point divided by the velocity

of the transfer point, the point at which the response is computed. Figures 2 and 3 show that the use of only ‘
infinite fluid elements does not yield results as accurate as does the use of either one or two layers of finite

fluid elements. Figure 4 shows that the results obtained using infinite fluid elements over a layer of finite

fluid elements are accurate and are an improvement over the results produced using one layer of finite fluid

elements. Figure 5, however, shows that the same cunfiguration using infinite fluid elements preduces no

more accurate results than does using an equally costly model that contains two layers of finite fluid elements.

DISCUSSION OF TEST RESULTS

The evaluativns of the infinite elements show that they produce accurate tesults, especially if they are
used over a layer of finite Auid elements. This conclusion is consistent with earlier work on two-dimensional
infinite elements in which goud aceuracy was vbtained when finite fluid elements were used with infinite
elements. ! However, when solutions ubtained using infinite elements are compared with solutions obtained
using only finite clenients, taking into consideration both the effort to construct the model and the accuracy of
the solutions, it 15 seen that for added mass problems infinite elements do not offer an advantage over finite
elements. For a more complete ¢valuation of the infinite elements, elements with higher order mapping and
shape functions could be tested. But for a fair comparison, a higher order infinite clement must compete with
an equally higher order finite element so that, as the accuracy of the infinite elements improves, so also will
the accuracy of its wwmipetitor. It was judged that, fur added mass problems, the prospects that the accuracy of
the infinite elements would improve more than tnat of the competing method was nut guod envugh to warrant
the investment of additional study, and there are no plans to continue the investigation of infinite elements

for added mass problems.
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It 15 expected that infinite elements hold more promise for applications to the Helmholtz equation
problem. It1s known that a finite fluid element model for the Helmholtz equation case must include six to
eight layers of finite elements to follow the shape of the wave and must include damping boundary conditions
on the outer boundary to account for energy dissipation by outgoing sound wawt:-s.15 Infinite elements
developed for the Helmholtz equation problem will include wave characteristics of the sound field in their
shape functions and are expected to account for energy dissipation. The resalts obtained with the added mass
elements show promise that the Heliholtz equation elements will be able to produce accurate solutions with
the use of one layer of finiwe fluid elements. If this promise is realized, the use of infinite fluid elements will
offer a considerable advantage over the use of only finite fluid elements. The infinite elements for the
Helmholtz equation must also compete with the boundary integral equation method This method produces
accurate solutions, but it is also expensive, since it requires the solution of systems of linear equations that are
not banded and not symmetric. Infinite fluid elements offer the possibility that for some problems, the

accuracy needed may be obtained at less expense.
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APPENDIX A. VERIFICATION PROBLEM

To evaluate the performance of the infinite clements for representing the Laplace operator, the

elements were used to solve the boundary value problem for the potential ¢
v =0

in the region cuside of 1 bounded surface with boundary conditions ¢ = f prescribed on the surface. The
boundary of the exterior iegion was a cylindrical surface with finite lungth and closed ends. The cylindrical
boundary has length = 50 in. and radius = 10 in.

Symmetries in the problem reduced the number of ¢lements needed to model the cylindrical boundary
and the exterior region A plane of symmetiy midway between the ends and perpendicular to the axis of the
rylindrical boundary permitted modeling only the half of the length of the cylindncal boundary and the half of
the region on one side ¢f the plane. Two additional planes of symmetry, mutually perpendicular and each
containing the axis of the cylindrical buundary, permitted modeling one-fourth of the remaining cylindrical
boundary and exter.or region. Therefore, only one-cighth of the cylindrical boundary and exterior region
needed to be modeled.

Figure 7 gie~ + nd and side views of the cylinder and the surrounding acoustic fluil. Three varieties of
infiuite elements were used to model the ucoustic fluid in this problem. The infinite ¢lements on the sides
and on the end, except the circle of elements on the axis of the ¢ylinder, are the eight-node infinite elements
descrit ed earlier in this report. In the coiner region, between the side and end sections of elements, the
infinite ciements havz been modificd to extend to infinity in two directions, r and z. The circle of infinite
clem.nts on the axis of the ¢ylinder at the «nd of the cylindiical shell are similar to the eighi-node elements,
but their bases are triargles.

The infinite elements were evaluated by compating the accuracy of a solution obtained using a model
that incorporated infinite clements with the accutacy obtained using models that contained only finite

. clements. Thz three finite eclement models co wained two, thice, o1 four layers of finite clements. Since the
potential becomes zers at large radii, the buundary condition ¢ — 0 was assigned at the vuter houndary of the

£ .ow element model. For the infinite element solution, the model of the exterior region consisted ol one
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Fig. 7. Finite and infinite element model of the region surrounding the cylindrical Loundary.

layer of finite Laplace elements over the cylindrical surface with infinite elements placed over this layer. This

evaluation consists of comparisons of values obtained for the exterivl potential at nodes on the surface

between the finite and infinite clements. The standard for compatisons was a solutivn obtained using the
'::" boundary integral equation program BEASY. Tle boundary conditions were ¢(8,2) — (11 4)cusf un the
K\ : cylindrical surface and ¢(0,r) — 2.6 r cos# on the end. To be consistent with the boundary elements used
with BEASY, the boundary conditions were computed at 0 = 0°, 15°, and 90 ° and linearly inteipolated

f‘“ between. Table 2 gives potentials computed at several points, the potentials for each point in the table have

5#5%-3 . been normalized by dividing by the standard potential computed at the point.
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TABLE 2. Potentials computed outside the cylindrical shell.

) Potentials(normalized)
Point Coordinates Methods
r 0 2 BIE 1B FE4 FE3 FE2

6.67 22,5 | 29.17 | 1.000 0.955 1.050 1.044 1.027
10.0 45.0 | 29.17 | 1.000 0914 0875 0.861 0.820
13.14 | 56.25 | 20.83 | 1.000 0.999 1.002 0979 0.917

13.14 | 56.25 8.33 1.000 0.990 0966 0.927 0.840
Note: In Table 2, the acoustic fluid is modeled by

BIE - boundary integral equation program BEASY

IE - infinite elements over one layer of finite elements

FEi - finite elements only, i layers
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APPENDIX B. EVALUATION PROBLEMS
Two test problems were used o evaluate the usc of infinite elements for applications to fluid-structure
interaction problems.
The first test problem is to compute the natural frequencies of a submerged cantilevered plate This

13 2ad the problem corresponds to his

plate has the properties of the first of two plates analyzed by Marcus,
deeply submerged case. The length-to-choid ratio of the plate equals 2.0 and the thickness-to-chord ratio
equals 0.0131. The plate has the material properties of steel, with Young’s modulus = 3 0 107 Ib/in?,
Poisson’s ratio = 0.3, and mass density = 7.324 10™* Ib- sec?/in®. The fluid is assumed to have mass density
= 9.34 10" % Ib- sec?/in* and sound speed = 6000 in,/scc. The frequencies computed here compare well with
those computed by Marcus. However, his formulation is slightly diffevent from the formulation used herc,
since he included the fluid matrix Q that derives from the 9%p/0t? term (see Eq. 2), so his resulis are not
compared with the results from this work. Rather, comparisons were made using a standard consistent with
the formulation of the added mass approximation used in this work.

By using boundary conditions that represent the line of symmetry running lengthwise along the center
of the plate, o 'y une-half of the plate in the chordwise direction need be modeled. The finite element model
of the plate consists of five NASTRAN QUADI1 plate elements along the length and three clements across the
width. One end of the plate is constrained to represent ".e clamped end condition. The fluid is modeled with
NASTRAN three-dimensional IHEX ! isoparametric finite elements and with infinite elements. The fluid
elements extend for two elements outside of the plate in the directions of the length and the width. B, using
half of the mass and bending stiff ness of the plate, ouly the fluid on one side need be explicitly mudeled, On
the outer Loundary of the fluid finite element model the Loundary condition p = 0 is applied. Figure 8 shows
the finite element model of the plate and the acoustic fluid.

The finite element solution of the submerged plate problem is implemented using the NASTRAN
program in three runs. The first NASTRAN run computes a force vector using a unit pressuie load on the
fluid-structure interface. The resulting pressure lvad vector is processed to produce the area matrix A, and in

the second NASTRAN run the matrix A is used to form the added mass matrix. The third NASTRAN run
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adds the added mass matrix to the mass matrix of the structure and computes the natural frequencies of the

fluid-structure system.

o, ";’ﬁs#-—-
.

X} ) , . " :
,:& Several configurations of fluid elements were used to compute the natural frequencies Since Marcus
3 showed that for low frequencies the natural frequencies of a submerged plate can be computed accurately

A

’:: using only a few layers of finite elements (he got good accuracy using three layers), a set of natural

N

::} frequencies was computed using five layers of finite fluid elements and this set was used as the standard for

companison. Comparisons with frequencies obtained using thiee and four layers showed that the conservative

model with five layers v as well converged. Table 3 shows frequencies obtoined in the test.

s

s

The second test problem 1s to compute the forced frequency response of a submerged cylindrical sheil

= Bt
~—

with closed ends. The amphtude of the response is computed at a transfer point on the cylinder for a range of

X

A

&

3: frequencies. The response is due to a harmonic excitation of unit amplitude at a separate drive point
3
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' \ TABLE 3. Natural frequencies of a submerged plate.
,\I Frequencies(Hz)
{ Layers Infinite
A of Finite | Elements Mode
Ah Elements Used 1 2 3 4 5
¥ 5 No |504 287 329 949 955
R 1) 0 Yes |526 294 340 964 974
- ,' 1 Yes 516 294 336 955 96.9
0
\g; 2 No 530 294 341 975 989
)%::
B
A The finite element model for the surrounding fluid, in which infinite elements are placed over one layer
"a’ of finite elements, had the same configuration as that used for the exterior region in the Dirichlet problem in
) Appendix A (see Fig. 7). As in the Dirichlet problzm, symmetries reduced the number of elements needed
. to model the cylinder and the surrounding fluid, so that only one-eighth of the cylinder and surrounding fluid
needed to be moudeled. The finite ¢clement analysis for this problem is also implemented using the NASTRAN
4
&
1 s program. The matrices for the infinite ements and the area matrix are generated by a separale program and
i
i : entered during the NASTRAN run vn DMIG cards images. As in the submerged plate problem, the structure
a’j (that is, the cylindrical shell) was modeled with NASTRAN QUAD1 plate elements and the fluid was modeled
L4
;‘ with NASTRAN three-dimensional HIEX1 isoparametric finite elements. Figures 3-6 show frequency
AT
7

)
':‘- response curves for the submerged cylindrical shell.
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